Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Given a prime powerqand$$n \gg 1$$ , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ is$$\#A({\mathbb {F}}_q)$$ for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ for some abelian varietyAover$${\mathbb {F}}_q$$ . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ is realizable.more » « less
-
Abstract. We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C ′ are curves over a finite field K, with K-rational base points P and P ′ , and let D and D ′ be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C ′ , P ′ ) are doubly isogenous if Jac(C) and Jac(C ′ ) are isogenous over K and Jac(D) and Jac(D ′ ) are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than na¨ıve heuristics predict, and we provide an explanation for this phenomenon.more » « less
-
null (Ed.)Abstract We study the intersection of the Torelli locus with the Newton polygon stratification of the modulo $$p$$ reduction of certain Shimura varieties. We develop a clutching method to show that the intersection of the open Torelli locus with some Newton polygon strata is non-empty. This allows us to give a positive answer, under some compatibility conditions, to a question of Oort about smooth curves in characteristic $$p$$ whose Newton polygons are an amalgamate sum. As an application, we produce infinitely many new examples of Newton polygons that occur for smooth curves that are cyclic covers of the projective line. Most of these arise in inductive systems that demonstrate unlikely intersections of the open Torelli locus with the Newton polygon stratification in Siegel modular varieties. In addition, for the 20 special Shimura varieties found in Moonen’s work, we prove that all Newton polygon strata intersect the open Torelli locus (if $p>>0$ in the supersingular cases).more » « less
-
null (Ed.)The Ceresa cycle is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the Ceresa class. Describing the Ceresa class explicitly for non-hyperelliptic curves is in general not easy. We present a "combinatorialization" of this problem, explaining how to define a Ceresa class for a tropical algebraic curve, and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over ℂ((t)), and show that the Ceresa class in each of these settings is torsion.more » « less
An official website of the United States government

Full Text Available